4 research outputs found

    Waste Management Assessment of Candidate Materials for HiPER Reaction Chamber

    Full text link
    One of the critical decisions in the HiPER project is to select the most appropriate material for the reaction chamber. Within this framework, we investigate the performance of different steel alloys with respect to waste management. The capabilities of commercial steels, both austenitic and ferritic/martensitic, compared to reduced-activation ferritic/martensitic steels are evaluated as for different waste management strategies (near surface burial, clearance, hands-on and remote recycling). The examined materials are: SS304, SS316, mod.9Cr-1Mo and HT9 and EUROFER. Real impurities concentrations are taken into account, and their impact is analyzed. In the study, we have assumed the most exigent HiPER 4a irradiation scenario. Commercial steels revealed to be a suitable choice for the HiPER reaction chamber, as far as their waste management options do not differ significantly from those of the reduced activation ferritic steel case. We found that for mod.9Cr-1Mo and EUROFER hands-on recycling is already possible after a cooling time shorter than 50 years and that shallow-land burial is practicable for all the steel alloys studied. The impurities present in the real heats affects the cooling time for manual recycling but not significantly. Shallow-land burial feasibility is not perturbed by the presence of impurities in the real commercial heats. Moreover, the impact of activation cross section uncertainties on the waste management assessment of the irradiated steels has been analyzed, and it is found to be of no practical significance to determine eligibility of the considered steels for the HIPER 4a reaction chamber

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Estimating costs and benefits of C-ITS deployment in Austria, England and the Netherlands using the Cobra+ tool

    No full text
    Cooperative systems which rely on vehicle-to-infrastructure communications are designed to tackle important road"br" transport issues, such as safety and pollution. Since the associated monetary commitment is substantial, a clear"br" understanding of the appropriate business models and likely costs, impacts and benefits is necessary before"br" investment decisions can be made. A tool for estimating the costs and benefits, from both business and the societal"br" point of view, was developed in the COBRA+ project, to assist National Road Authorities (NRA) during their"br" decision processes. This paper illustrates the application of the tool to use cases in Austria, England and the"br" Netherlands. The study identifies some of the key aspects to focus on in order to achieve a beneficial balance"br" between costs and positive impacts. Findings reveal that the costs are likely to be higher than the monetised benefits"br" over the time period investigated (to 2030). The financial role of the NRA (or their Road Operator) is particularly"br" influential for the business case

    Evaluation of neutron spectrometer techniques for ITER using synthetic data

    No full text
    A neutron spectrometer at ITER is expected to provide estimates of plasma parameters such as ion temperature, Ti, fuel ion ratio, nt/nd, and Qthermal/Qtot, with 10-20% precision at a time resolution, Δt, of at least 100 ms. The present paper describes a method for evaluating different neutron spectroscopy techniques based on their instrumental response functions and synthetic measurement data. We include five different neutron spectrometric techniques with realistic response functions, based on simulations and measurements where available. The techniques are magnetic proton recoil, thin-foil proton recoil, gamma discriminating organic scintillator, diamond and time-of-flight. The reference position and line of sight of a high resolution neutron spectrometer on ITER are used in the study. ITER plasma conditions are simulated for realistic operating scenarios. The ITER conditions evaluated are beam and radio frequency heated and thermal deuterium-tritium plasmas. Results are given for each technique in terms of the estimated time resolution at which the parameter determination can be made within the required precision (here 10% for Ti and the relative intensities of NB and RF emission components). It is shown that under the assumptions made, the thin-foil techniques out-perform the other spectroscopy techniques in practically all measurement situations. For thermal conditions, the range of achieved Δt in the determination of Ti varies in time scales from ms (for the magnetic and thin-foil proton recoil) to s (for gamma discriminating organic scintillator)
    corecore